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Response to “Comment on the Model for isothermal Oscillations of 
Ethylene Oxidation on Platinum” 

Hsueh-Chua Chang and Mobolaji Aluko 
(I) report that the model proposed to de- 
scribe isothermal rate and oxygen activity 
oscillations during ethylene oxidation on 
platinum (2, 3) does not properly predict 
oscillations. They suggest that the oscilla- 
tions generated by Eqs. (22-25) in Ref. (3) 
are artifacts which result from numerical 
difficulties in the integration of these equa- 
tions. Their objections can be refuted both 
on mathematical and physical grounds. 
However, their and our calculations have 
suggested that a lower bound exists on the 
permissible integration step size if the 
model is to simulate an “inf%tely fast” 
phenomenon, such as unstable PtO, de- 
composition, with a finite-rate expression 
(aNG202 in Eqs. (22) and (25) of Ref. (3)), 
however large (but finite) N, might be. 

The authors of Ref. (1) assigned arbitrary 
values to the model parameters (N, = N2 = 
Ns= 1,N,=N6=0.1,N,=N,=200)and 
integrated using the Euler method with an 
integration step, at, of the order of lob5 
times the residence time. They found that 
the oscillation period and amplitude vanish 
as the integration step size approaches 
zero. Additional calculations that we per- 
formed have cont?rmed this phenomenon, 
as shown in Figs. la and b. However, the 
authors of (2) failed to observe two very 
important facts. First, for a sufficient in- 
crease in the step size, the limit cycle am- 
plitude and period attain constant values, 
independent of St and N, (Figs. la and b). 
Second, for any fixed step size, an increase 
in N4 causes the amplitude and period to 
increase and reach their St-independent 
values. Such an increase in N, is justified 
because the corresponding term in the 
model represents an infinitely fast process 
step. Our calculations show that the period 
and amplitude increase linearly with 6t up 

to their limiting values (see Appendix for 
proof). The calculations we reported in (3) 
were performed for N, = ~0 (e.g., step- 
changes in 0, and x, when the oxide be- 
comes unstable) and, therefore, are inde- 
pendent of the size of the integration step. 
Further mathematical discussion is given in 
the Appendix. 

Physically, the limiting values of the os- 
cillation period and amplitude result from 
the rapidity of the decomposition of the 
oxide relative to the mixing time in the re- 
actor. The oxide decomposes completely 
before the catalytic surface senses a shift in 
the gas-phase composition back into the 
stable-oxide region. Thus, the depth of the 
excursion into the stable-oxide region dur- 
ing each cycle depends on the space veloc- 
ity and amount of oxide formed in the pre- 
vious limit cycle. The period of the 
oscillations additionally depends on the lo- 
cal values of the rates rI and r2, as discussed 
in detail in (3) (Fig. 11 of Ref. (3) and re- 
lated discussion). 

Because Eqs. (22)-(25) of (3) describe a 
CSTR, the integration-step size is analo- 
gous to the mixing time in the reactor. 
Therefore, care must be exercised in choos- 
ing 6t large enough to assure that the as- 
sumption of a well-mixed reactor is valid 
throughout the integration. A St of order 
10” times the residence time, as used in 
(I), implies a mixing time of order loss s, 
which is physically unrealistic. The choice 
of 6t is especially critical in the integration 
of Eqs. (22)-(25) of (3) due to the high rate 
of oxide decomposition and reaction. If N, 
is not taken as infinitely large, the integra- 
tion of the equations is only valid if 6t > 
N&N&, where L$ characterizes the point 
of the limit cycle at the stability limit. In 
chasing the proper value of N, it suffices, 
on physical grounds, that the reaction time 
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Our results, 
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FIG. 1. Results of numerical integration of the model (3) with the conditions specified in Ref. (I). 

Effect of N, on limit cycle amplitude (a) and period (b). 

for oxide decomposition and reaction with in (I) aIso fail to support the authors’ objec- 
ethylene (proportional to l/N,) and the tions to our model. To the “right” of the 
mixing time in the reactor must be of the stability line (or surface) 0, = 0 because in 
same magnitude. This is physically reason- this region the oxide is unstable. Conse- 
able, as both are diffusion-limited pro- quently the vector normal to this surface 
cesses. and pointing to the “right” is equal to frT = 

The mathematical arguments presented [- 1, K”, 0, p]/( 1 + K* 2 + )82)1’2, where p is 
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any nonpositive number. Furthermore, as 
we approach the stability line from the 
“right” ((Y = l), f * ii is always greater than 
zero because 0, is zero de fucro. When we 
approach the stability line from the “left,” 
Eq. (5) of (1) is correct just before the tra- 
jectory arrives at the oxide stability limit. 
When it does arrive at the stability limit, (Y 
changes from 0 to 1 while 6, is still nonzero. 
The large value ofN, causes f * fi to switch 
from a positive to a negative value, thus 
initiating the limit cycle. When integrating 
Eqs. (22)-(25) of (3) exactly (e.g., 6t + 0), 
the physical requirement that the oxide de- 
composition and reaction time and the mix- 
ing time be of equal magntiude translates 
into a mathematical requirement that N, + 
TV. That is, when the stability limit is 
reached from the left, f * n + -00, thereby 
initiating a finite limit cycle. Perhaps a 
mathematically more formal way to visual- 
ize the above discussion is to represent the 
infinitely fast decomposition step in Eqs. 
(23) and (25) of (3) by a Dirac function of 
the form 8(x, - K*x,)B,, instead of the term 
aN$.#, used originally. 

It should be noted that it is necessary to 
assume an “inMtely fast” oxide decompo- 
sition and reaction step only if one insists 
upon assuming infinitely small mixing time 
in the reactor; i.e ., 6t = 0. 

The authors of (I) are correct in noting 
that if N3 > l/K* and the initial condition 
lies to the left of the stability limit then the 
model predicts oscillations. The oscilla- 
tions do not resemble a second steady 
state, as discussed above. The model also 
predicts that no oscillations should occur 
when l/3 < Ns < K* and both the steady- 
state and initial condition lie to the right of 
the stability limit. These predictions have 
not been verified experimentally due to the 
difficulty in imposing the necessary true 
step changes in concentrations. 

In conclusion, the model presented in (3) 
has been shown to be physically and mathe- 
matically valid. The integration of the perti- 
nent equations is nontrivial and requires a 
firm physical understanding of the reactor 

dynamics. Further refinements in the model 
would certainly be useful, as described in 
(3). However, the model in its present form 
successfully describes all steady-state and 
oscillatory experimental behavior in a semi- 
quantitative fashion. 

APPENDIX 

Here, we prove the following three addi- 
tional points related to the mathematical 
model presented in (3). 

(a) The integration step 6t in the Euler 
algorithm should be larger than 

Ng . (3 - K*) 
6N, (3N, - 1) 

for the accurate calculation of the periodic 
phenomena taking place near the oxide sta- 
bility line. 

(b) The oscillation amplitude [ArJ is 
given by Ax2 = N6/6. 

(c) When condition (a) is violated, the 
amplitude is given by 

Proof. Let to, 4, 4, 6, eO,, denote the 
time and the value of x1, x,, e,, 0, when the 
trajectory meets the oxide stability line as it 
tries to go from the “left” to the “right.” 
Then (Y changes from 0 to 1, oxide starts to 
decompose, and the N, terms dominate the 
corresponding Eqs. (23) and (25) of Ref. 
(3). Consequently, 

AxZ = - N4x$ St, (AlI 

A(j 2 = -E!Gxcyjt 
N6 ’ ’ WV 

Ax, = 2 At&, (A3) 

where i3t is the integration step in the Euler 
method. Because of the large value of N,, 
we can accurately approximate that 
(&(t,,-) = 1. At to + 6t the trajectory will be 
moved to the left of the stability line and (I! 
will change back to 0, allowing new oxide 
to form. Physically this is not possible un- 
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less all the previously existing oxide de- Ns (3 - K’“) 
composed and the liberated oxide reacted 6tZ 6N, (3N, - 1) 

and 6x2 = 2 (A6) 

with ethylene. It then follows that 6t should 
be large enough to make At& = - 1, hence 

and if the first is not satisfied, then accord- 
ing to (Al), the amplitude is given by 

NS 
at e 6N& and [Ax21 = 2. (A4) 

If 6t is smaller than the above value only 
part of the oxide decomposes before new 1. 
oxide is formed and naturally the oscillation 
amplitude, which is given by Eq. (Al) 2. 
above, depends linearly on the step size at, 
as shown in Fig. la. 

3 

We further assume that 4 lies close to 
the stoichiometry line, x1 = 3x, + 1 - 3N,. 
This assumption has been motivated by ob- 
servation of the numerical results reported 
in (3). It then follows that 

[Ax21 = N4 ‘3”: j&l tit. (A71 
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